Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 15(2)2023 01 19.
Article in English | MEDLINE | ID: covidwho-2200900

ABSTRACT

Literature offers plenty of cases of immunocompromised patients, who develop chronic and severe SARS-CoV-2 infections. The aim of this study is to provide further insight into SARS-CoV-2 evolutionary dynamic taking into exam a subject suffering from follicular lymphoma, who developed a persistent infection for over 7 months. Eight nasopharyngeal swabs were obtained, and were analyses by qRT-PCR for diagnostic purposes. All of them were considered eligible (Ct < 30) for NGS sequencing. Sequence analysis showed that all sequences matched the B.1.617.2 AY.122 lineage, but they differed by few mutations identifying three genetically similar subpopulations, which evolved during the course of infection, demonstrating that prolonged replication is paralleled with intra-host virus evolution. These evidences support the hypothesis that SARS-CoV-2 adaptive capacities are able to shape a heterogeneous viral population in the context of immunocompromised patients. Spill-over of viral variants with enhanced transmissibility or immune escape capacities from these subjects is plausible.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Immunocompromised Host , Mutation
2.
Cell Rep Med ; 3(9): 100735, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-1984242

ABSTRACT

We here investigate the impact of antiviral treatments such as remdesivir on intra-host genomic diversity and emergence of SARS-CoV2 variants in patients with a prolonged course of infection. Sequencing and variant analysis performed in 112 longitudinal respiratory samples from 14 SARS-CoV2-infected patients with severe disease progression show that major frequency variants do not generally arise during prolonged infection. However, remdesivir treatment can increase intra-host genomic diversity and result in the emergence of novel major variant species harboring fixed mutations. This is particularly evident in a patient with B cell depletion who rapidly developed mutations in the RNA-dependent RNA polymerase gene following remdesivir treatment. Remdesivir treatment-associated emergence of novel variants is of great interest in light of current treatment guidelines for hospitalized patients suffering from severe SARS-CoV2 disease, as well as the potential use of remdesivir to preventively treat non-hospitalized patients at high risk for severe disease progression.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections , Pneumonia, Viral , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/adverse effects , Betacoronavirus , Coronavirus Infections/drug therapy , Disease Progression , Humans , Pandemics , Pneumonia, Viral/chemically induced , RNA, Viral/therapeutic use , RNA-Dependent RNA Polymerase , SARS-CoV-2/genetics
3.
Int J Infect Dis ; 122: 444-448, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1895084

ABSTRACT

OBJECTIVES: Intra-host SARS-CoV-2 evolution during chronic infection in immunocompromised hosts has been suggested as being the possible trigger of the emergence of new variants. METHODS: Using a deep sequencing approach, we investigated the SARS-CoV-2 intra-host genetic evolution in a patient with HIV over a period of 109 days. RESULTS: Sequencing of nasopharyngeal swabs at three time points demonstrated dynamic changes in the viral population, with the emergence of 26 amino acid mutations and two deletions, 57% of them in the Spike protein. Such a combination of mutations has never been observed in other SARS-CoV-2 lineages detected so far. CONCLUSION: Our data confirm that persistent infection in certain immunocompromised individuals for a long time may favor the dangerous emergence of new SARS-CoV-2 variants with immune evasion properties.


Subject(s)
COVID-19 , SARS-CoV-2 , Evolution, Molecular , Humans , Immunocompromised Host , Mutation , SARS-CoV-2/genetics
4.
Front Med (Lausanne) ; 8: 760170, 2021.
Article in English | MEDLINE | ID: covidwho-1572293

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is caused by a respiratory virus with a wide range of manifestations, varying from asymptomatic to fatal cases, with a generally short outcome. However, some individuals present long-term viral shedding. We monitored 38 individuals who were mildly affected by the SARS-CoV-2 infection. Out of the total studied population, three (7.9%) showed atypical events regarding the duration of positivity for viral RNA detection. In one of these atypical cases, a previously HIV-positive male patient presented a SARS-CoV-2 RNA shedding and subgenomic RNA (sgRNA) detected from the upper respiratory tract, respectively, for 232 and 224 days after the onset of the symptoms. The SARS-CoV-2 B.1.1.28 lineage, one of the most prevalent in Brazil in 2020, was identified in this patient in three serial samples. Interestingly, the genomic analyses performed throughout the infectious process showed an increase in the genetic diversity of the B.1.1.28 lineage within the host itself, with viral clearance occurring naturally, without any intervention measures to control the infection. Contrasting widely spread current knowledge, our results indicate that potentially infectious SARS-CoV-2 virus might be shed by much longer periods by some infected patients. This data call attention to better adapted non-pharmacological measures and clinical discharge of patients aiming at preventing the spread of SARS-CoV-2 to the population.

SELECTION OF CITATIONS
SEARCH DETAIL